Download the Licensed Drivers by Sex and Age Groups, 1963 - 2023 data and set up your working environment.
Create a .qmd
document so when we get to interactive documents, your plots will work.
If we check the other version of this data set, we can clearly see the error.
mutated_drivers <- mutated_drivers |>
filter(Cohort != "19 and Under" &
Cohort != "20-24") |>
mutate(Cohort = factor(Cohort,
levels = c("Under 16",
"16", "17", "18",
"19", "20", "21", "22",
"23", "24", "25-29",
"30-34", "35-39","40-44",
"45-49", "50-54", "55-59",
"60-64", "65-69", "70-74",
"75-79", "80-84", "85 and Older")))
How has number of drivers (y) changed over time?
Call:
lm(formula = Drivers ~ Year + Cohort:Sex, data = mutated_drivers)
Residuals:
Min 1Q Median 3Q Max
-2862.4 -786.2 -97.2 871.2 3387.9
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -98261.519 2611.437 -37.627 < 2e-16 ***
Year 49.612 1.296 38.274 < 2e-16 ***
CohortUnder 16:SexFemale -562.990 248.891 -2.262 0.023783 *
Cohort16:SexFemale 52.846 248.891 0.212 0.831870
Cohort17:SexFemale 446.534 248.891 1.794 0.072918 .
Cohort18:SexFemale 666.551 248.891 2.678 0.007453 **
Cohort19:SexFemale 808.010 248.891 3.246 0.001184 **
Cohort20:SexFemale 881.830 248.891 3.543 0.000403 ***
Cohort21:SexFemale 938.223 248.891 3.770 0.000167 ***
Cohort22:SexFemale 985.551 248.891 3.960 7.71e-05 ***
Cohort23:SexFemale 1025.305 248.891 4.119 3.92e-05 ***
Cohort24:SexFemale 1050.649 248.891 4.221 2.52e-05 ***
Cohort25-29:SexFemale 7848.846 248.891 31.535 < 2e-16 ***
Cohort30-34:SexFemale 7803.715 248.891 31.354 < 2e-16 ***
Cohort35-39:SexFemale 7549.207 248.891 30.331 < 2e-16 ***
Cohort40-44:SexFemale 7143.961 248.891 28.703 < 2e-16 ***
Cohort45-49:SexFemale 6709.518 248.891 26.958 < 2e-16 ***
Cohort50-54:SexFemale 6194.879 248.891 24.890 < 2e-16 ***
Cohort55-59:SexFemale 5534.846 248.891 22.238 < 2e-16 ***
Cohort60-64:SexFemale 4690.272 248.891 18.845 < 2e-16 ***
Cohort65-69:SexFemale 3703.895 248.891 14.882 < 2e-16 ***
Cohort70-74:SexFemale 3363.200 287.242 11.709 < 2e-16 ***
Cohort75-79:SexFemale 2084.900 287.242 7.258 5.20e-13 ***
Cohort80-84:SexFemale 847.500 287.242 2.950 0.003202 **
Cohort85 and Older:SexFemale 222.767 287.242 0.776 0.438096
CohortUnder 16:SexMale -553.613 248.891 -2.224 0.026216 *
Cohort16:SexMale 153.846 248.891 0.618 0.536548
Cohort17:SexMale 609.977 248.891 2.451 0.014322 *
Cohort18:SexMale 853.452 248.891 3.429 0.000616 ***
Cohort19:SexMale 996.174 248.891 4.002 6.45e-05 ***
Cohort20:SexMale 1043.223 248.891 4.191 2.87e-05 ***
Cohort21:SexMale 1081.731 248.891 4.346 1.44e-05 ***
Cohort22:SexMale 1122.600 248.891 4.510 6.77e-06 ***
Cohort23:SexMale 1158.272 248.891 4.654 3.43e-06 ***
Cohort24:SexMale 1177.338 248.891 4.730 2.37e-06 ***
Cohort25-29:SexMale 8423.125 248.891 33.843 < 2e-16 ***
Cohort30-34:SexMale 8242.075 248.891 33.115 < 2e-16 ***
Cohort35-39:SexMale 7904.698 248.891 31.760 < 2e-16 ***
Cohort40-44:SexMale 7491.944 248.891 30.101 < 2e-16 ***
Cohort45-49:SexMale 7067.387 248.891 28.396 < 2e-16 ***
Cohort50-54:SexMale 6560.108 248.891 26.357 < 2e-16 ***
Cohort55-59:SexMale 5915.846 248.891 23.769 < 2e-16 ***
Cohort60-64:SexMale 5066.928 248.891 20.358 < 2e-16 ***
Cohort65-69:SexMale 3977.026 248.891 15.979 < 2e-16 ***
Cohort70-74:SexMale 3121.967 287.242 10.869 < 2e-16 ***
Cohort75-79:SexMale 1823.167 287.242 6.347 2.59e-10 ***
Cohort80-84:SexMale 610.467 287.242 2.125 0.033662 *
Cohort85 and Older:SexMale NA NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1112 on 2511 degrees of freedom
(248 observations deleted due to missingness)
Multiple R-squared: 0.8885, Adjusted R-squared: 0.8864
F-statistic: 434.9 on 46 and 2511 DF, p-value: < 2.2e-16
Download the number of drivers per state data and plot an interactive map.