Dowload data on the world soccer cup and set up your analysis environment.
What questions can we answer with these data?
To run logistic regression, we need to transform our response variable into a numeric variable:
The 1/0
binary variable is handy to calculate percentages:
Once we have our 1/0
response variable, we run the glm
(generalized linear model) with family = binomial
:
Call:
glm(formula = response ~ team_name, family = binomial, data = world_cup)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.91629 0.59161 -1.549 0.12143
team_nameAngola 1.60944 1.36015 1.183 0.23670
team_nameArgentina 1.60944 0.63683 2.527 0.01150 *
team_nameAustralia 0.10536 0.84327 0.125 0.90057
team_nameAustria 0.98528 0.69864 1.410 0.15845
team_nameBelgium 0.86977 0.66564 1.307 0.19132
team_nameBolivia -0.69315 1.24499 -0.557 0.57770
team_nameBosnia and Herzegovina -15.64978 1385.37792 -0.011 0.99099
team_nameBrazil 1.73727 0.62740 2.769 0.00562 **
team_nameBulgaria 0.10536 0.72839 0.145 0.88499
team_nameCameroon 0.47446 0.72975 0.650 0.51559
team_nameCanada -15.64978 1385.37792 -0.011 0.99099
team_nameChile 0.79851 0.68415 1.167 0.24315
team_nameChina PR -15.64978 1385.37792 -0.011 0.99099
team_nameColombia 0.91629 0.74162 1.236 0.21663
team_nameCosta Rica 0.55962 0.76997 0.727 0.46735
team_nameCôte d'Ivoire -15.64978 799.84846 -0.020 0.98439
team_nameCroatia 0.91629 0.77460 1.183 0.23684
team_nameCuba 0.22314 1.36015 0.164 0.86969
team_nameCzech Republic 0.22314 1.36015 0.164 0.86969
team_nameCzechoslovakia 0.91629 0.69522 1.318 0.18751
team_nameDenmark 1.16761 0.77715 1.502 0.13299
team_nameDutch East Indies -15.64978 2399.54479 -0.007 0.99480
team_nameEcuador 0.51083 0.87560 0.583 0.55962
team_nameEgypt 0.91629 1.16190 0.789 0.43034
team_nameEl Salvador -15.64978 979.61021 -0.016 0.98725
team_nameEngland 1.17580 0.64468 1.824 0.06817 .
team_nameFrance 1.21354 0.64578 1.879 0.06022 .
team_nameGerman DR 1.60944 1.04881 1.535 0.12490
team_nameGermany 1.90669 0.67490 2.825 0.00473 **
team_nameGermany FR 1.30833 0.64578 2.026 0.04277 *
team_nameGhana 0.91629 0.82664 1.108 0.26767
team_nameGreece 0.73397 0.84656 0.867 0.38594
team_nameHaiti -15.64978 1385.37792 -0.011 0.99099
team_nameHonduras -0.33647 0.99642 -0.338 0.73560
team_nameHungary 0.91629 0.68920 1.329 0.18368
team_nameIR Iran -0.69315 1.24499 -0.557 0.57770
team_nameIran -0.69315 1.24499 -0.557 0.57770
team_nameIraq -15.64978 1385.37792 -0.011 0.99099
team_nameIsrael 1.60944 1.36015 1.183 0.23670
team_nameItaly 1.43355 0.63363 2.262 0.02367 *
team_nameJamaica 0.22314 1.36015 0.164 0.86969
team_nameJapan 0.04082 0.79582 0.051 0.95909
team_nameKorea DPR -0.87547 1.23153 -0.711 0.47716
team_nameKorea Republic 0.31845 0.70065 0.455 0.64946
team_nameKuwait 0.22314 1.36015 0.164 0.86969
team_nameMexico 0.54160 0.65323 0.829 0.40704
team_nameMorocco 0.10536 0.84327 0.125 0.90057
team_nameNetherlands 1.36828 0.65416 2.092 0.03647 *
team_nameNew Zealand 0.22314 1.04881 0.213 0.83151
team_nameNigeria 0.14310 0.77045 0.186 0.85265
team_nameNorthern Ireland 1.38629 0.82158 1.687 0.09154 .
team_nameNorway 1.42712 0.93986 1.518 0.12890
team_nameParaguay 0.54160 0.70951 0.763 0.44526
team_namePeru 0.51083 0.79232 0.645 0.51911
team_namePoland 1.24171 0.69461 1.788 0.07383 .
team_namePortugal 1.38629 0.71589 1.936 0.05281 .
team_nameRepublic of Ireland -15.64978 665.51423 -0.024 0.98124
team_nameRomania 1.01160 0.73547 1.375 0.16899
team_nameRussia 0.22314 0.92195 0.242 0.80875
team_nameSaudi Arabia 0.10536 0.84327 0.125 0.90057
team_nameScotland -0.12516 0.75861 -0.165 0.86895
team_nameSenegal 1.32176 1.08781 1.215 0.22434
team_nameSerbia 0.22314 1.36015 0.164 0.86969
team_nameSerbia and Montenegro -15.64978 1385.37792 -0.011 0.99099
team_nameSlovakia 0.91629 1.16190 0.789 0.43034
team_nameSlovenia -0.69315 1.24499 -0.557 0.57770
team_nameSouth Africa 0.22314 0.92195 0.242 0.80875
team_nameSoviet Union 1.24171 0.69461 1.788 0.07383 .
team_nameSpain 1.22378 0.64762 1.890 0.05880 .
team_nameSweden 0.82928 0.66115 1.254 0.20973
team_nameSwitzerland 0.55962 0.68661 0.815 0.41505
team_nameTogo -15.64978 1385.37792 -0.011 0.99099
team_nameTrinidad and Tobago -15.64978 1385.37792 -0.011 0.99099
team_nameTunisia -0.18232 0.89132 -0.205 0.83792
team_nameTurkey 1.32176 0.87560 1.510 0.13116
team_nameUkraine 1.32176 1.08781 1.215 0.22434
team_nameUnited Arab Emirates -15.64978 1385.37792 -0.011 0.99099
team_nameUruguay 0.83933 0.65348 1.284 0.19900
team_nameUSA 0.31015 0.69194 0.448 0.65398
team_nameWales 2.30259 1.26491 1.820 0.06871 .
team_nameYugoslavia 1.18822 0.67832 1.752 0.07982 .
team_nameZaire -15.64978 1385.37792 -0.011 0.99099
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2362.1 on 1703 degrees of freedom
Residual deviance: 2158.3 on 1621 degrees of freedom
AIC: 2324.3
Number of Fisher Scoring iterations: 15
We have to calculate the \(R^2\) manually:
We can also run anova on the model:
And get the effects: