CSc 110 Introduction to Computer Programming I

Final Exam — Practice

Fall 2024

This is an individual exam, and there will be a 120 minute window for you to complete it.
Do not cheat off of those nearby you.

Make sure to write your responses clearly and legible. There’s no need to add comments or docstrings to
your code.

Each question has a designated box where your response should go. Use a DARK pen or pencil, and write
INSIDE the answer boxes provided. Anything outside the box will not be considered as part of your response.

You may do extra work to arrive at the response, but the response MUST go in its designated box. Anything
outside the box will not be considered as part of your response.

If you have any questions, please raise your hand.

Question 1

Loop table
Give the function below:
def even_up_nested(lists):
for i in range(len(lists)):
for j in range(len(lists[il])):

lists[i] [j] += lists[i][j] % 2
return lists

Complete the loop table below with the corresponding values of i, j, 1ists[i] [j] % 2 and lists for the
following function call:

even_up_nested([[0, 2, 1, 3], [3, 2], [0, 1]])

RESPONSE FOR QUESTION 1:

Question 2

Evaluate the code below. Enter in each box what the last line of code in each chunk prints. When the code
throws an error, write ERROR in the response box.

24

numbers = []

numbers .append (10)
numbers . append (1)
numbers.insert (1, 0)
print (numbers)

RESPONSE 2A:

2B

numbers = [1, 2]
numbers.insert (0, 3)
numbers[2] = 100
print (numbers)

RESPONSE 2B:

2C
numbers = [1, 2]
print (numbers [2])

RESPONSE 2C:

2D
numbers = {1, 2, 3, 1, 2}
print (numbers)

RESPONSE 2D:

2F

numbers = {1}
numbers.add(2)
numbers.add(2)
print (numbers)

RESPONSE 2E:

Question 3a — Selection Sort

def find_min_index(items):
min_index = None
for i in range(len(items)):
if min_index == None or items[min_index] > items[i]:
min_index = i
return min_index

def selection_sort(items):
begin_index = 0
while begin_index < len(items)-1:
min_index = find_min_index(items[begin_index:]) + begin_index
items[begin_index], items[min_index] = items[min_index], items[begin_index]
begin_index += 1
return items

Using selection sort (code for reference above), how many sweeps and swaps would it take until the list gets
sorted? Show your work. Indicate the number of sweeps and swaps in their designated boxes.

(10, 4, 2, 10, 5, 7]

SHOW YOUR WORK FOR QUESTION 3:

SWEEPS:

SWAPS:

Question 3b — Bubble Sort

def bubble_sort(items):
swapped = False
end = len(items)-1
while not swapped:
swapped = True
for i in range(end):
if items[i] > items[i+1]:
items[i], items[i+1] = items[i+1], items[i]
swapped = False
end -= 1

Using bubble sort (code for reference above), how many sweeps and swaps would it take until the list gets
sorted? Show your work. Indicate the number of sweeps and swaps in their designated boxes.

(10, 4, 2, 10, 5, 7]

SHOW YOUR WORK FOR QUESTION 3:

SWEEPS:

SWAPS:

Question 4

Write a Python function called trim_ends that has a 2D list as parameter. The function should mutate and
return the argument list, removing the first and last element of each sublist (if the sublist is not empty).

Test case:

numbers = [[10, 20, 200, 40],
[1, [10],
[1000, 1000, 10],
[20, 30, 4, 100]]
trim_ends (numbers)
assert numbers == [[20, 2001, [1, [], [1000], [30, 4]]

RESPONSE FOR QUESTION 4:

Question 5
Write a python function that does the following:

1. Its name is create_list
2. It takes two arguments, a set of strings and an integer n
3. It returns a list that contains each string from the set repeated n times

items = {"banana", "apple", "pear"}
1YY p

assert create_list(items, 2) == ['banana', 'banana', 'apple', 'apple',

'pear’',

'pear']

RESPONSE FOR QUESTION 5:

Question 6

See the python code and the contents of the file name data.txt. The python code writes content to a file
named result.txt. You must determine what the contents of result.txt will be after the code runs. Put
your answer in the response box.

data.txt

one silver edging

trees leaves are green

this simple request is finally
a moody final countdown

def is_acceptable(x):
for i in range(0, len(x)-1):
if x[i] == x[i+1] and x[i] in "aeiou":
return True
return False

def main():
data = open('data.txt', 'r')
result = open('result.txt', 'w')
for line in data:
words = line.strip('\n').split(' ')
for word in words:
z = is_acceptable(word)
if z:
result.write(word + '\n')
data.close()
result.close()

main()

RESPONSE FOR QUESTION 5:

Question 7

Write a function called star_consonants that has one string as parameter. The function returns a new
string of the same length as the parameter string, with every consonant replaced by an asterisk ("*").

assert star_consonants('"banana'") == "*a*a*a"
assert star_consonants("a") == "a"

assert star_consonants("apple") = "axkke!
assert star_consonants("") == C

RESPONSE FOR QUESTION T7:

Question 8

Write a function called total that has one parameter named file_name, being the name of a file to read.
The function expects that the file to read has one or more integer numbers on it per line. It iterates over
the lines and numbers to compute the total of all the numbers from the file. It returns the total.

Example of data.txt file

assert total("data.txt") == 44

RESPONSE FOR QUESTION 8:

10

Question 9
Write a function that does the following:

1. Its name is average_rows

It has one parameter named lists, being a 2D list of float numbers

3. For each list (row) within the 2D list, it should calculate the average of the numbers within, round it
at two decimals, and place the resulting average in a new list at the same index

4. Tt returns the list of the averages

o

assert average_rows([[1.2, 5.4, 4.3, 2.0], [0.0, 1.0]]) == [3.23, 0.5]
assert average_rows([[], [10.5]]) == [None, 10.5]
assert average_rows([[1.0], [2.5, 3.5, 4.5], [0.0, 0.0], [0.0, 2.0]]) == [1, 3.5, 0.0, 1.0]

RESPONSE FOR QUESTION 9:

11

Question 10

Write a function called mutate_dict that takes two arguments: a dictionary with string keys and integer
values, and a set of strings. The function mutates and returns the dictionary argument adding the strings

in the set as keys in the dictionary:

1. if the key already exists in the dictionary, do not change anything
2. if the key does not exist in the dictionary, create with with the value zero associated with it

test_dictionary = {"z": 1, "x": 2, "r": 20}
mutate_dict(test_dictionary, {"a", "z", "r", "b"})

assert test_dictionary == {"z": 1, "x": 2, "r": 20, "a": 0, "b": 0}

RESPONSE FOR QUESTION 10:

12

Question 11

Write a Python function called remove_vowel_ending that takes a list of strings as argument (you can
assume strings are never empty). The function should remove list items that end in a vowel (check for upper
or lower case).

test_list = ["Peter", "Bob", "Ana", "MARIO", "CEDRIC"]
remove_vowel_ending(test_list)

assert test_list == ["Peter", "Bob", "CEDRIC"]

assert remove_vowel_ending([]) == []

RESPONSE FOR QUESTION 11:

13

Question 12

Write a Python function called remove_vowels that takes a list of strings as argument The function should
mutate and return the argument list, removing the vowels of each item in the list.

test_list = ["Peter", "Bob", "Ana", "MARIO", "CEDRIC"]
remove_vowels(test_list)

assert test_list == ["Ptr", "Bb", "n", "MR", "CDRC"]

assert remove_vowels([]) == []

RESPONSE FOR QUESTION 12:

14

Question 13

Write a python function that takes a list of integers representing years, and evaluates whether each year (for
example, 2024) is a leap year or a regular year. The function should return a dictionary with the results.

Leap years are:

« divisible by 4 and not divisible by 100
e divisible by 100 and also divisible by 400

All other cases are regular year.

Test cases (your leap_year function definition should work with these function calls):

years = [1992, 2000, 1900, 1700, 2024]

result = leap_year(years)

assert result == {1992: 'Leap Year',
2000: 'Leap Year',
1900: 'Regular Year',
1700: 'Regular Year',
2024: 'Leap Year'}

RESPONSE FOR QUESTION 13:

15

Question 14

Write python code that given a list of years, it mutates the list by removing the leap years. All your code
should be in functions.

RESPONSE FOR QUESTION 14:

16

	Question 1
	Loop table

	Question 2
	Question 3a – Selection Sort
	Question 3b – Bubble Sort
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Question 13
	Question 14

