import pandas as pd
import numpy as np
import statsmodels.api as sm
def logit_to_probability(logit):
return 1 / (1 + np.exp(-logit))
def main():
data = pd.read_csv("data/clean_titanic.csv")
X = data[["fare", "sex", "age",
"siblings_spouses_aboard",
"parents_children_aboard"]]
y = data["survived"]
model = sm.OLS(y, sm.add_constant(X)).fit()
print(model.summary())
coeffs = pd.DataFrame(model.params)
print(coeffs)
coeffs_prob = coeffs[0].apply(logit_to_probability)
print(coeffs_prob)
main()